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Abstract. Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-

layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are mea-

sured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance

(σ2
w) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively

increase and decrease σ2
w, reduce the accuracy of these measurements. Herein, an established method that utilizes the autoco-5

variance of the signal to remove noise is evaluated and its skill in also correcting for volume-averaging effects in the calculation

of σ2
w is assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the

most accurate estimates of σ2
w. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300-

m tower, the autocovariance technique is shown to improve estimates of σ2
w over a variety of atmospheric conditions. After the

autocoviance technique is applied, values of σ2
w from the Doppler lidars are generally in close agreement (R2 ≈ 0.95− 0.98)10

with those calculated from sonic anemometer measurements.

1 Introduction

Various scanning strategies and measurement methods have been used to quantify turbulence characteristics from Doppler lidar

(DL) observations. Sathe and Mann (2013) summarize the state-of-the-art DL turbulence measurement techniques and limita-

tions with current observations, several of which are briefly described here. One method involves velocity structure functions,15

which can be calculated longitudinally along the beam or transversely across azimuths in sector plan position indicator (PPI)

scans (e.g., Eberhard et al., 1989; Frehlich and Cornman, 2002; Krishnamurthy et al., 2011; Davies et al., 2004). Values of

the horizontal wind variance (σ2
u and σ2

v) can be calculated from range height indicator scans, by first separating the measured

velocity into height bins and calculating the variance in velocity at each height (e.g., Banta et al., 2006; Pichugina et al., 2008).

A novel six-beam technique proposed by Sathe et al. (2015) can be used to calculate all six terms within the Reynolds stress20

tensor.
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Quantifying vertical velocity variance σ2
w and calculating vertical velocity spectra are some of the simplest and most direct

measurements of turbulence that are possible with a DL, since no complex scanning strategies are required and w is being

directly measured at high temporal resolution (≈ 1 Hz). These measurements have been used in many studies (e.g., Hogan

et al., 2009; Lothon et al., 2009; Barlow et al., 2011; Shukla et al., 2014). For this measurement, the DL simply points at zenith

and continually collects measurements of the vertical velocity w, for which σ2
w, spectra of w, and other turbulence statistics of5

w can be calculated at every range gate over a user-defined time interval. These measurements are often used to derive other

important planetary boundary layer (PBL) variables. Sensible and latent heat fluxes can be retrieved using σ2
w and w skewness

profiles (Gal-Chen et al., 1992; Davis et al., 2008; Dunbar et al., 2014). The mixing height can be determined from profiles

of σ2
w as the height where σ2

w decreases below a threshold value (Pearson et al., 2010; Barlow et al., 2011). Integral time

and length scales, which are critical parameters for turbulence schemes within numerical models, can be calculated from the10

autocorrelation of w (Lenschow et al., 2000; Lothon et al., 2006). Eddy dissipation rate ε can be estimated from the spectrum

of w (O’Connor et al., 2010). With all of these above variables being derived from observed fluctuations of w, it is important

to assess the accuracy of DL w measurements and their derived statistics.

The mean wind speeds computed from DL velocity-azimuth display (VAD) or Doppler beam swinging (DBS) scans have

been shown to compare well to those from anemometers, radiosondes, and radar wind profilers (e.g. Smith et al., 2006). In15

comparison to sonic anemometers, the sampling volume and averaging time of DLs is large (∼ 20 m and 1 s, respectively), and

therefore DLs are unable to resolve smaller scales of turbulence. A diagram showing these effects is provided in Fig. 1. Addi-

tionally, DL data can be noisy when aerosol loading and the signal-to-noise ratio (SNR) are small, largely due to limitations

in accurately estimating the mean-frequency of the returned signal (e.g. Frehlich and Yadlowsky, 1994). These two limitations

have opposite effects on computed higher-order statistics such as σ2
w. Noise increases computed σ2

w and resolution volume20

effects reduce the values of σ2
w measured by the DL compared to the true atmospheric variance. Barlow et al. (2011) compared

the standard deviation of w, σw, with those from a sonic anemometer and found that the sonic anemometer generally observed

larger values of σw due to the higher sampling frequency. When the sonic anemometer data were averaged to match the fre-

quency of the DL observations, the values of σw from the DL and sonic anemometer were in better agreement, but considerable

scatter still existed. Fuertes et al. (2014) used measurements from three synchronous DLs to compute the three-dimensional25

wind vector at 0.5 Hz for comparison with sonic anemometer measurements, and showed that the DL and sonic measurements

were in agreement when the sonic observations were filtered and downsampled to match the spatial and temporal sampling of

DL measurements.

Both Barlow et al. (2011) and Fuertes et al. (2014) highlight that DLs are incapable of resolving turbulence on small spatial

and temporal scales, as shown in Fig. 1, but do not offer corrections for these limitations in the DL measurements. Hogan30

et al. (2009) attempts to correct for underestimates of σ2
w by extrapolating the power spectrum out to higher frequencies that

cannot be resolved by the DL, but does not have sonic anemometer measurements for which these corrected DL σ2
w values

can be compared. While this method may correct for the inability of DLs to capture smaller scales of turbulence,appropriate

techniques for removing noise that can be present in DL observations when SNR is low were not discussed. Herein, we propose

to use the autocovariance method discussed by Lenschow et al. (2000) to correct for the effects of both noise and the resolution35
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Figure 1. Diagram showing various scales of turbulence compared to the resolution volumes of the DLs and sonic anemometers on the tower.

DL beams are denoted by red lines, and range gates by black line segments over it. The DL is able to resolve many of the larger turbulent

eddies, but vertical velocities associated with eddies smaller than the range-gate size, such as those shown in grey, cannot be resolved. Many

of the smaller eddies may be captured by the sonic anemometer, since their resolution volume is much smaller than the DL. Image is not to

scale.

volume to accurately determine the value of variance along the radial velocity; in this case, the analysis focues on measurements

when the lidar beam was pointed vertically. Lenschow et al. (2000) originally proposed this method as a means of measuring

higher-order moments in noisy data, and the technique will be discussed in detail in Sect. 3.

Few studies compare lidar-derived second- and third-order statistics that utilize the autocovariance method with in situ

measurements. Turner et al. (2014a) has compared Raman lidar estimates of water vapour variance and skewness with those5

from aircraft observations and showed general agreement in the profile shape, but significant differences in the observations

were also apparent. Some disagreement in the measurements was partially attributed to sampling differences. Lenschow et al.

(2012) compared normalized profiles of DL-derived vertical velocity variance, skewness, and kurtosis with those from other

experiments and found generally good agreement. However, to date, the accuracy of these higher-order statistical values from

lidars have not been closely evaluated by comparison with other in situ observations.10
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Herein, we provide the first in-depth analysis of the applicability of the autocovariance method of retrieving variance values.

DL measurements and derived estimates of σ2
w are directly compared with those from sonic anemometers to address the

following questions:

1. What are the optimal parameters that should be used when applying the autocovariance method? How sensitive are the

derived statistics to these parameters?5

2. What scales of turbulence can DLs explicitly resolve? Can the autocovariance technique be used to correct for the

limitations of time and volume averaging?

3. How robust are DL-derived estimates of vertical velocity variance, and how does the accuracy of these change with

height and for different stability regimes?

A description of the instrumentation used and the experiment, including weather conditions during the measurements, is10

provided in Sect. 2. The autocovariance technique and the ideal number of lags used in its application is described in detail

within Sect. 3. Comparisons of DL and sonic anemometer measurements and derived statistics are presented within Sect. 4.

Potential additional applications of this technique and the need for other intercomparison studies are discussed in Sect. 5. A

summary and the main conclusions are provided in Sect. 6.

2 Experiment and Instrumentation15

Measurements used in this study were collected during the Lower Atmospheric Thermodynamics and Turbulence Experiment

(LATTE), which was conducted at the Boulder Atmospheric Observatory (BAO) from 10 February to 28 March 2014 with a

small extension to 28 April 2014. The BAO is located 25 km east of the foothills of the Rockies within gently rolling terrain

near Erie, CO, USA. The BAO has a suite of permanently and semi-permanently installed meteorological and boundary-layer

instruments, such as sodars, a ceilometer, and a 300-m instrumented tower. More complete details of the BAO facility and the20

surrounding terrain are discussed by Kaimal and Gaynor (1983). In addition to these permanently installed instruments, several

Doppler lidars and an unmanned aerial system were deployed at the site by Lawrence Livermore National Laboratory (LLNL)

and the University of Oklahoma (OU). Additionally, the National Center for Atmospheric Research (NCAR) deployed a new

449-MHz wind profiler (see Lindseth et al., 2012) at the site for validation of wind and reflectivity measurements.

One of the primary objectives of LATTE was to measure and validate PBL three-dimensional turbulence fields with multiple25

Doppler lidars, sonic anemometers, an unmanned aerial system, and radar. Several different DL scanning strategies outlined

in Sect. 1 were tested for comparison of turbulence measurements with those collected from sonic anemometers. Herein,

we focus on measurements taken during a two-day period between 26 March and 28 March, when two DLs were placed

within two metres of the sonic anemometer booms on the 300-m tower. Since these measurements are in close proximity with

each other, vertical velocity statistics calculated from the DL measurements can be directly compared with those from sonic30

anemometers. A summary of the instruments used within this study is provided in Table 1, and they are described in more

detail below.
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Table 1. Overview of all instruments and their properties that are used here.

Instrument
Measurement

Heights

Sampling

Rate
Owner Boom

R.M. Young

3-D Sonic Anemometers

50, 100, 150,

200, 250, 300 m
30 Hz OU

North-

west

Campbell Scientific CSAT3

3-D Sonic Anemometers

50, 100, 150,

200, 250, 300 m
60 Hz NCAR

South-

east

Halo Streamline

Doppler Lidar

99 m–9.6 km

18-m range gates
0.7 Hz OU

South-

east

WindCube v2

Doppler Lidar

40-200 m

12 measurement heights

20-m range gates

0.25 Hz

for vertical

beam

LLNL
North-

west

2.1 Boulder Atmospheric Observatory Tower

The 300-m BAO tower is permanently instrumented with cup anemometers, temperature, humidity, and ozone sensors at 10-

, 100-, and 300-m on booms extending to the southeast (154◦) of the tower. In addition to these measurements, six sonic

anemometers were temporarily installed on booms on both the southeast and northwest (334◦) side of the tower. The sonic

anemometers were equally spaced every 50-m in height, with the lowest mounted at 50-m and the highest at the top of the tower5

at 300-m. Six R.M. Young 3-D sonic anemometers (model 81000, R.M. Company, Traverse City, Michigan, USA) provided

by OU were installed on the northwest booms, and these sampled at 30 Hz. NCAR provided the Campbell Scientific 3-D sonic

anemometers (CSAT 3, Campbell Scientific, Logan, Utah, USA), which sampled at 60 Hz, that were installed on the southeast

booms. A spike filter was used to remove erroneous measurements, in which data points that were farther than three standard

deviations of the mean, calculated over 30-min windows, were removed.10

2.2 Doppler Lidars

Two DLs, a LLNL WindCube v2 (henceforth LLNL WC) and an OU Halo Streamline (henceforth OU DL), were deployed

next to the base of the 300-m tower from 26 March to 28 March. The WC was situated to the northwest of the tower, while the

OU DL was deployed southeast of the tower. The DLs were located a few metres from the ends of the booms on the tower so

that the beam would not be obscured. For the analysis, turbulence statistics from each DL were generally compared with those15

from the sonic anemometers above each lidar. Specifically, statistics from the LLNL WC are compared with those from the

R.M. Young anemometers, and statistics from the OU DL are compared with those from the CSAT 3 anemometers.
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2.2.1 OU Halo Streamline

The OU DL uses a pulsed, heterodyne 1.5 µm laser to detect backscattered energy from aerosols within the atmosphere and

to determine the radial velocities along the laser beams from the Doppler shift in the received signal. The range gate size is

user-adjustable, with a minimum spacing of 18-m that was used during this portion of LATTE. The smallest range gate spacing

of 18-m was chosen to minimize the effects of volume averaging. The focus was set at 300 m, which is the minimum possible5

focus length, so that generally the largest SNR and highest-quality data are at that height. Since the aerosol content of the air

was generally low during the experiment, as predominantly westerly winds advected clean air from the Rocky Mountains over

the BAO site, the noise in the measurements tends to increase significantly for measurements closer to the surface and farther

from the focus height. Details about the Halo Streamline hardware, specifications, and theory of operation can be found in

Pearson et al. (2009).10

2.2.2 LLNL WindCube v2

The LLNL WC was designed primarily for wind energy applications, and thus continuously conducts DBS scans for retrieval of

horizontal winds within the lowest 200 m of the atmosphere. The DBS scan consists of consecutive beams off-zenith pointing

north, east, south, west, and followed by a vertically pointing beam. The vertical velocity component w is directly measured

by the vertical beam and is the only variable from the LLNL WC that is used within this analysis. Independent measurements15

of w from the vertical beam are available approximately every 4 s. The range gate size is 20 m, which is slightly larger than

that for the OU DL. Typically during LATTE, the SNR values from LLNL WC measurements are largest at 50 m and decrease

with height; thus the highest-quality measurements are closer to the surface than those from the OU DL.

2.3 Meteorological Conditions

To document the general meteorological conditions, mean temperature, wind speeds, and bulk Richardson number (Ri) at three20

heights during the two-day period when the DLs were located next to the towers are shown in Fig. 2. The value of Ri, which is

used as a proxy for stability, is calculated as

Ri =
g
θ

∆θ
∆z
V 2

z2

, (1)

where g is gravity, θ is the potential temperature, ∆θ is the difference in temperatures between the measurement height and

that at 10-m, ∆z is the difference in sampling heights (i.e, z− 10 m), z is height, and V is the wind speed at the height that Ri25

is calculated, implicitly assuming that the surface wind speed is zero.

During a significant portion of the observational period, the wind speed in the lowest 300-m was greater than 5 m s−1.

Particularly high winds occurred around 0300 UTC on 27 March. Since the wind direction was westerly (wind direction not

shown), these were likely associated with downsloping flow that frequently occurs in this area on the lee of the mountains,

which transports momentum downward from higher in the troposphere (e.g., Brinkmann, 1974). Conditions predominantly30
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Figure 2. Evolution of θ (a), wind speed (b), and Ri (c) over the two-day observational period from 26 to 28 March, 2014. The colours

indicate the height of the measurement on the BAO tower, for which red is 10-m, blue is 100-m, and black is 300-m. Thick green lines

denotes when DLs were setup and began operating near the tower, while the magenta lines indicate the end of this observational period. Red

horizontal line in (c) shows Ri=0.25 for reference, above which conditions typically are strongly stable and turbulence becomes intermittent.
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supported neutral stability during the study period. Stable conditions (Ri> 0.25) were observed for several hours on 27 March,

but strongly unstable conditions where Ri <−0.1 were never present.

3 Correction of Lidar Variance Values

Lenschow et al. (2000) discusses a methodology of estimating second- through fourth-order moment values within noisy

measurements, with a focus on observations taken by various types of lidars. This technique has been used in numerous studies5

to estimate second- and higher-order moments of water vapour from Raman lidars and Differential Absorption lidars (DIALs)

(e.g., Machol et al., 2004; Wulfmeyer et al., 2010; Turner et al., 2014a, b), temperature from Raman lidar (e.g., Behrendt et al.,

2015), ozone from a DIAL (e.g., Machol et al., 2009; Alvarez II et al., 2011), velocity from Doppler lidars (e.g. Grund et al.,

2001; Tucker et al., 2009), and it was also extended to correct eddy-covariance flux measurements of trace gases (e.g., Mauder

et al., 2013; Peltola et al., 2014). While this methodology has been used within many studies, to the authors’ knowledge there10

are no in-depth evaluations of corrected and uncorrected turbulence statistics, using the Lenschow et al. (2000) technique, of

any quantity measured by a lidar against in situ observations. Herein, we evaluate the applicability of this technique to extract

accurate variance estimates from lidar measurements.

3.1 Overview of Method

The method described by Lenschow et al. (2000) to obtain turbulence statistics in noisy data is outlined here. The second-order15

autocovariance function (M11) of a stationary time series is defined as

M11(t) = (w′+ ε′)(w′t + ε′t), (2)

where w(t) is a correlated variable (herein, specifically vertical velocity), ε is contamination from random white noise, t is the

time-lag, and primes denote deviations from the mean. If the noise is uncorrelated, as is expected with lidar measurements, the

cross terms become small and negligible, thus at a lag of zero20

M11(0) = w′2 + ε′2. (3)

This relationship shows that the measured variance by the lidar M11(0) is the result of both the true atmospheric variance

w′2 and the noise variance in the returned signal ε′2. By assuming that w′2 is largely due to isotropic turbulence within the

inertial subrange (Monin and Yaglom, 1979), which is generally true within the PBL except when gravity waves are present,

the expected autocovariance function M∗11 is25

M∗11(t) = w′2−Ct2/3, (4)

8
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in whichC is a parameter related to eddy dissipation sincew is a component of the velocity. Henceforth, the fitting of Eq. 4 will

be referred to as the ‘structure function fitting’, as the 2/3-power within Eq. 4 ultimately stems from Kolmogorov’s structure

function (Kolmogorov, 1941). By treating both w′2 and C as unknowns and fitting M∗11 to the observed M11 at lags within the

inertial subrange, estimates of w′2 and ε′2 can be made wherein

w′2 =M∗11(0) and (5)5

ε′2 =M11(0)−M∗11(0). (6)

Using this relationship implicitly requires that Taylor’s frozen hypothesis is valid (Taylor, 1938), meaning that turbulent eddies

do not evolve over time as they pass through the resolution volume for time scales over which the fitting of Eq. 5 is applied.

3.2 Number of Lags for Fitting

For the most accurate and robust estimates of variance or higher-order moments, the proper number of lags to use for the fitting10

is not well-known or trivial. Within many studies in which this method is used, the number of lags used is either not discussed

or a seemingly arbitrary number of lags that the authors determined were within the inertial subrange is used (e.g. Lenschow

et al., 2000; Wulfmeyer et al., 2010). Previously, the maximum lag time (τmax below) used within the fitting ranges from 12.5 s

(e.g., McNicholas and Turner, 2014) to over 100 s (e.g. Behrendt et al., 2015). Ideally, the smallest lag used in the fitting should

correspond to the time scale at which contributions to M11 from turbulent eddies that cannot be explicitly resolved become15

negligible. This can also be thought of as the time scale corresponding to the smallest-scale eddies that can be resolved by the

lidar. The largest lag to be used should be within the inertial subrange, but not so long that frozen turbulence cannot be safely

assumed. The total number of lags used should be enough that an accurate and representative fitting can be ensured.

Here, we define the ideal lags to use in the fitting based on the resolution of the instrument and turbulence characteristics.

Since the smallest lag is related to the time scales of the turbulent eddies that cannot be resolved by the lidar, we define the20

smallest lag τmin to be

τmin =
∆r
V
, (7)

where ∆r is the size of the range gate or resolution volume and V is the mean horizontal wind speed. Assuming that turbulence

is isotropic, this ensures that τmin is large enough that eddies of the same size or smaller than the resolution volume, which lead

to underestimates of the true M11 at short lags, will not negatively affect the fitting. Within this study, the maximum value of25

τmin is set to 8 s for time periods when the wind speed is small. This maximum for τmin is somewhat arbitrary, but a maximum

value is needed since τmin→∞ as V → 0. Since the evolution of turbulent structures becomes significant for larger lag times

9
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Figure 3. Comparison of tint as calculated from the sonic anemometer and DL M11 values, using Eq. 9. Red shows values calculated from

LLNL WC measurements, and blue shows those calculated from the OU DL observations. Black solid line shows a one-to-one relationship.

The dashed lines show the linear regressions, with the equations for linear regression and coefficients of determination shown in the upper

left corner.

(Higgins et al., 2013), this limit for τmin is a compromise between minimizing the effects of both volume averaging and time

evolution of turbulence.

We define the largest lag τmax to use as

τmax = min
(
tint
2

, t
(
M11(t) =

M11(0)
2

))
, (8)

where tint is the integral time scale. Under convective conditions, generally τmax = tint

2 . However, under more stable condi-5

tions, computed values of tint often becomes much larger than the typical time scales within the inertial subrange due to the

10
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small value of w′2. Under these conditions, the time at whichM11 = M11(0)
2 is used for τmax instead. Values of tint are defined

as

tint =
1
w′2

t(M11=0)∫

0

M11(t)dt, (9)

wherein w′2 is M∗11(0), and both tint and w′2 are both iteratively solved. Values of tint calculated from the DL observations

compared with those calculated from sonic anemometer measurements are shown in Fig. 3. Generally, the values of tint5

calculated from the OU DL are in better agreement with those derived from anemometer measurements than those from the

LLNL WC. This is likely due to the faster sampling rate of the OU DL, therefore the time between lags (dt) is shorter in the

numerical integration. Considerable scatter is evident in the estimates of tint, which is due to the differences in the values of

M11 at various lags that is discussed within Sect. 4.3.

If the conditions are such that τmin is greater than τmax, such as in the stable boundary layer with weak winds, then τmax10

is set to be one lag more than τmin. Using this method for such time periods when the integral time scale is not explicitly

resolved is not ideal since values of M11 are not accurately modeled by Eq. 4. However, as shown in Sect. 4.4, this method

often improves estimates of σ2
w during these time periods by removing noise, which can be significant compared to the small

values of σ2
w. Typical values of τmin and τmax that were used during LATTE are shown in Table 2.

When using the autocorrelation fitting to determine the value of w′2 and ε′2, it is expected that M∗11(0) (i.e., w′2) is less than15

M11(0), and that ε′2 is the positive difference of M11(0) and w′2. An example of this is shown in Fig. 4a, where the fitting

of Eq. 4 leads to a smaller estimate of w′2 than M11 at lag zero. However, we observe that under periods of strong turbulence

and high SNR, estimates of w′2 can be greater than M11(0) as shown in Fig. 4b. Using the definition in Eq. 6, values of ε′2

are negative in these cases, which is physically impossible since ε′2 in the signal is always positive or zero. To our knowledge,

this behaviour has not been discussed in any previous studies. We attribute this ‘negative error’ to volume-averaging effects,20

where the smaller scales of turbulence cannot be properly captured by the DL and when the true noise in the measurements is

small. This generally occurs when τmin is large (> 4 s), when averaging effects are significant due to the slow advection of

eddies through the measurement volume. The accuracy of the fitting under conditions when M∗11(0) is both greater and less

than M11(0) is discussed in Sect. 4 through comparison with sonic anemometer measurements.

Table 2. Typical values of τmin and τmax that are used during LATTE.

Min

[s]

Max

[s]

Mean

[s]

Standard Deviation

[s]

τmin 1.4 8 2.9 2.2

τmax 2.8 35 11.5 9.1
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Figure 4. The dashed black lines are example fittings of the structure function (Eq. 4) to M11 values from the DL observations, which are

shown by black dots. The fitting shown in (a) is expected when white noise is present, as the peak at lag zero is attributed to noise. Within

(b), M11 at lags zero and one are less than is expected from isotropic turbulence. This is attributed to the volume and time averaging effects

of the DL when noise values are very low.

Numerous studies discuss the importance of considering the averaging time when measuring turbulence statistics (e.g.

Lenschow et al., 1994; Mahrt, 1998; Hollinger and Richardson, 2005). These errors are related to the representativeness of

statistics from a single point measurement to the PBL as a whole, and need to be considered when making generalizations

about the PBL from single-point measurements. However, they are outside of the scope of this study. Since measurements

from the DL and sonic anemometer were taken within a few metres of each other, which is smaller than the resolution volume5

of the DL, measured statistics are expected to be very similar to each other and errors due to the spatial separation of the in-

struments should be minimal. Any differences in statistics of w between the two instruments are more likely due to differences

in sizes of sampling volumes and measurement principles.

4 Comparison of Vertical Velocity Statistics

Observations are averaged over 30-min windows for the computation ofM11 and other vertical velocity statistics from the DLs10

and sonic anemometers. During time periods when the instruments are waked from the 300-m tower, data are removed since

characteristics of the sampled turbulence will be influenced by the tower and not representative of the PBL. To elimate possibly

waked measurements, observations are removed when the upwind direction was within ±45◦ of the tower. Measurements are

also removed during time periods when precipitation or virga are evident on ceilometer measurements at the BAO site, since

precipitation affects the DL measured w. Since the method discussed in Sect. 3 quantifies and removes noise, no explicit SNR15
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filter was used to remove observations. All measurements of w from the DLs, regardless of the SNR value, are used in the

computation of σ2
w. However, DL data are removed during time periods when the estimated ε′2 is larger than a threshold.

Several different threshold values were evaluated, and a threshold of 1 m2 s−2 was a good compromise between keeping data

where accurate σ2
w statistics can be retrieved and eliminating meaningless results. Threshold values based on the ratio of ε′2

to σ2
w were evaluated, but no threshold ratio could be found that both kept accurate values of low σ2

w and removed inaccurate5

values of high σ2
w. Sampling errors ∆σ2

w, which are errors due sample unrepresentativeness of the population, were calculated

using formulations within Lenschow et al. (1994). These errors were found to be less than 5% of σ2
w for 84% of all DL

observations due to the long half-hourly averaging time in comparison to tint which was typically on the order of 1 min. In

fact, for 50% of the DL estimates, the sampling error is less than 1%. Thus, throughout the rest of this study, sampling error is

generally not a significant source of error and discrepancy between the DLs and the sonic anemometers, especially since the10

measurements were taken in such close proximity with each other. If the sonic anemometer and DL were farther apart, these

errors would be much more important.

4.1 Effect of Temporal Averaging and Number of Lags for Fitting

As discussed in Sect. 3.2, the proper number of lags to use for the fitting of the Eq. 4 has not been evaluated carefully

previously. Here, the autocovariance method is applied using various time lags to identify the accuracy of estimated values of15

σ2
w for differing numbers of lags. Measurements of w from the SE sonic anemometer at 300-m are averaged over 1-s (1-Hz)

and 10-s (0.1-Hz) intervals, to simulate the typical averaging times of DLs and DIALs/Raman lidars respectively. From these

averaged timeseries, values of M11 are calculated to test various lag times for the extrapolation.

Examples of M11 calculated from the raw and averaged sonic anemometer measurements are shown in Fig. 5, with fittings

of the structure function applied using the specified number of lags outlined in Sect. 3.2. τmin is calculated assuming a range20

gate size of 20 m, simulating DL values of τmin. Values of M11(0) from the 1-Hz and 0.1-Hz averaged data are smaller than

those from the 60-Hz observations, since small-scale fluctuations are removed during the averaging. However, values of M11

at larger lags, from the 1-Hz averaged and raw observations, are often very similar. Thus, the fitting of the structure function

to the 1-Hz observations generally accurately models M11, and the extrapolation to zero lag is nearly identical to that from

the raw time series. Values of M11 from the 10-s averaged data are not in good agreement with those from the raw timeseries,25

especially when M11 decreases quickly at small timescales as in Fig. 5a, b. Due to these differences, values of M11 are not

accurately modeled when fitting the structure function to the 0.1-Hz observations.

To further evaluate the effect of averaging time and amount of lag time used, comparisons of estimates of σ2
w using the

structure function fitting are compared with those from raw sonic anemometer measurements, shown in Fig. 6. Estimates of σ2
w

are calculated from the 0.1- and 1-Hz measurements using both 100-s of lag time and the previously defined number of ideal30

lags. The 100-s of lag time is similar to those used when applying this method to DIAL or Raman lidar measurements (e.g.,

Behrendt et al., 2015), which is needed since these observations are contaminated by significantly larger values of ε′2 and the

sampling rate is much lower.
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Figure 5. Sample M11 from the 300-m 60-Hz sonic data (blue dots) compared with the sonic data averaged to 1-Hz (red dots) and 0.1-Hz

(green dots). Dashed lines are the fittings of Eq. 4 to the filtered sonic data, using the specified number of lags discussed in Sect. 3.2. M11 is

calculated over 0200–0230 UTC (a), 0100–01300 UTC (b), 2000–2030 UTC (c), and 2030–2100 UTC (d) all on 27 March. Values of τmin

and τmax are provided in the lower left.

Using the previously mentioned ideal number of lags, the σ2
w estimates from the 1-Hz averaged data are in close agreement

with those calculated from the raw 60-Hz measurements for the entire range of σ2
w. This indicates that the sonic observations

can be accurately modeled by the structure function fit and contain little noise after the spike removal mentioned in Sect. 2.1.

Additionally, the lags defined in Sect. 3.2 are appropriate to use to retrieve accurate estimates of σ2
w. With the 0.1-Hz averaged

observations, estimates of σ2
w generally are in agreement with the true value of σ2

w when using the appropriate number of lags,5

although greater scatter is apparent. This also shows that the random error that may arise from using varying numbers of lags,

rather than a set number of lags, is minimal. If the random error were to change drastically based on the variable number of lags

used in the fitting, there would be much larger scatter for some of the data points depending on the amount of lags that are used.
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Figure 6. Relation of σ2
w values computed from the raw 30-min sonic timeseries compared with those estimated from the fitting of Eq. 4 to

the filtered sonic anemometer data at 300-m. Red and brown dots are the estimate from sonic data averaged to 1-Hz and 0.1-Hz respectively,

after the fitting is applied using the specified number of lags discussed in Sect. 3.2. Magenta and blue dots are estimates from sonic data

averaged to 1-Hz and 0.1-Hz, after the fitting is applied using 100 s of lag time. Black line indicates a one-to-one relationship. The dashed

lines show the linear regressions, with the equations for linear regression and coefficients of determination shown in the upper left corner.

However, since the linear regression line for the 0.1 Hz data (red line in Fig. 6) follows nearly a one-to-one relationship and

coefficient of determination is ≈ 1, the fitting is good for all lag times used and the random error due to the variable lag time is

small.

However, when 100 s of lag time is used within the fitting of the structure function, estimates of σ2
w are generally grossly

underestimated regardless of the averaging time. This lag time should never be applied under stable conditions since the inertial5

subrange is small. Additionally, 100 s lag time is too large during unstable conditions as well, leading to underestimates of σ2
w.

Furthermore, since σ2
w is underestimated, values of tint as defined in Eq. 9 will be overestimated, leading to the inaccurate

interpretation that a larger number of lags is acceptable to use.
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Figure 7. Timeseries of w′ during unstable (a, b) and stable (c, d) conditions, with each stability being during the same 10-min time periods

when the sonic anemometer is not waked by the 300-m tower. OU DL data are at 300-m (a, c), and LLNL WC measurements are at 100-m

(b, d). Red line shows the DL timeseries, while the blue line shows the comparable timeseries from the collocated sonic at the same height.

Note that y-axis scales for w′ are different in the top and bottom panels.

4.2 Comparison of Timeseries of w from DLs and Sonic Anemometers

Example timeseries of w′ from each DL compared with similar measurements from sonic anemometers are shown in Fig. 7

for both convective and stable periods. Generally, measurements from both the sonics and DLs tend to show similar trends in

how w′ varies over time. Maxima and minima of w′ occur at nearly the same time, which is particularly apparent in Fig. 7a, b

where the fluctuations are much larger. The magnitude of each individual maximum/minimum of w′ is generally less in the5

DL observations as compared to those from the sonic anemometers. The longer time and larger volume averaging of the DLs

reduces the magnitude of its observed fluctuations. Additionally, both DLs do not resolve all of the fluctuations that occur at
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short timescales. Differences in sampling frequency of the OU DL and LLNL WC are evident, particularly in Fig. 7a, b. Since

the LLNL WC has a lower sampling rate than the OU DL, turbulence statistics computed from its measurements are not as

representative of the true atmospheric variance as those from the OU DL.

Observations during stable conditions, shown in Fig. 7c, d, show less agreement in the time evolution of w′ between the

DL and sonic anemometer measurements compared to those during unstable conditions. This can be explained by the fact5

that during more neutral/unstable conditions atmospheric turbulence is governed by large turbulent eddies while during stable

conditions much smaller eddies, which cannot be fully resolved by DL measurements, dominate. Differences in sampling

volume and frequency thus have stronger effects during stable conditions, explaining why the scatter between the two different

DLs becomes larger during stable than unstable conditions.

4.3 Comparison of DL and Sonic Spectra and Autocovariance Function10

Several examples of M11 and the spectra of w from the OU DL and LLNL WC, compared with similar statistics from the

collocated sonic anemometer, are shown in Figs. 8, 9. The cases were chosen to show the accuracy of the DL spectra and M11

under various conditions. Measurements from the sonic anemometer are averaged to replicate the averaging time and sampling

frequency for each DL, to isolate how these parameters affect the measurement and evaluate the accuracy of using the method

discussed in Sect. 3. Generally, the spectra for the OU DL show good agreement with those calculated from sonic anemometer15

measurements. Under all of the cases presented, the lower frequency end of the inertial subrange is captured by the OU DL,

as a portion of the spectra follows the theoretical -2/3 line. However, at high frequencies (f > 0.1 Hz) within Fig. 8b, d, the

OU DL spectra flattens out or increases, which is likely due to a combination of noise in the signal increasing the variance

and spectral aliasing. Noise within the OU DL spectra in Fig. 8f is large enough to cause an increase in the spectra at high

frequencies. Additionally, within both the OU DL and downsampled sonic spectra shown in Fig. 8, the flattening of the spectra20

at the highest resolved frequencies is due to spectral aliasing from the smallest-scale turbulent motions being undersampled in

time (see Kirchner, 2005).

While the spectra of w′ from the OU DL are generally in agreement with those from the sonic anemometers, significant

differences are apparent inM11 computed from the two instruments (Fig. 8a, c, e). For example, within Fig. 8a,M11 values are

similar for short lags up to 10 s, after which M11 computed from the OU DL is greater than that from the sonic anemometer.25

On the contrary, within the time period for Fig. 8e, the values of M11 are in better agreement at larger lags (greater than 30 s),

but the OU DL derived M11 is much less than those computed from the sonic anemometers at shorter lags. The reasons for

these differences are not clear, but are likely due to differing measurement volumes. The anemometer samples a volume of air

precisely at 300 m, while the comparable OU DL measurement is averaged over a layer between 288–306 m. Thus, the exact

measurements of w, and its derived statistics, are expected to be slightly different between the sonic anemometer and DL.30

Within all three cases shown in Fig. 8,M11(0) calculated from the OU DL measurements is smaller than that calculated from

the sonic anemometer measurements. This indicates that, within these cases, the variance is underestimated by the OU DL.

Using the structure function fit, the estimated values of the variance from the OU DL data are improved for the cases shown

in Fig. 8a, c. Within Fig. 8e, the fitting leads to a smaller value of OU DL-derived σ2
w, due to the fact that noise is present as

17

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-134, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 7 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Lag [s]

AC
F 

[m
2  s

2 ]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lag [s]

AC
F 

[m
2  s

2 ]

a)

c)
10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lag [s]

AC
F 

[m
2  s

2 ]

10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

b)

d)

e) f)

fS
(f)

 [m
  s

  ]
2

-2
fS

(f)
 [m

  s
  ]

2
-2

fS
(f)

 [m
  s

  ]
2

-2

f [Hz]

M
1
1

M
1
1

M
1
1

τmin
τmax

= 4.3 s
= 11.5 s

τmin
τmax

= 1.4 s
= 8.6 s

τmin
τmax

= 1.4 s
= 15.8 s

Figure 8. Sample M11 (left column) and the corresponding spectra (right column) averaged over different 30-min time periods for measure-

ments at 300-m. Measurements shown are those calculated from the raw sonic observations (blue), sonic data averaged to match the lidar

averaging time (red), and OU DL observations (green). Dashed lines overlaid on M11 are the fittings of the structure function fit to the cor-

responding measurement. The fitting for the filtered sonic data use the same lags as that for the DL. M11 and the spectra are computed over

0530–0600 UTC (a, b), 1730–1800 UTC (c, d), and 2300–2330 UTC (e, f) on 27 March. Observations in a, b are during stable conditions

(Ri= 0.64), while data shown in c, d, e, f are during near neutral conditions(|Ri|< 0.05). Values of τmax and τmin for each time period are

shown in the lower left of (a, c, e).
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shown in Fig. 8f. By applying the structure function fit to the sonic anemometer measurements that are averaged to simulate

the OU DL observations, it is shown that the fitting uses a proper number of lags to estimate the expected M11 to lag zero. The

effect of averaging time on retrieved estimates of variance is discussed more throughly in Sect. 4.1.

Based on the presented spectra in Fig. 9b, d, f, LLNL WC w′ spectra are in generally good agreement at most frequencies

with those derived from sonic anemometer measurements. Similarly to the OU DL spectra, the LLNL WC spectra are often5

larger than those from the anemometers at high frequencies due to noise in the signal and spectral aliasing of higher frequen-

cies that are not resolved by the reduced sampling rate. The LLNL WC is often, but not always, able to resolve the lower

frequency portion of the inertial subrange. Within the convective conditions shown in Fig. 9d, f, the high-frequency region of

the LLNL WC spectra follows the -2/3-law expected within the inertial subrange. However, within the time period shown in

Fig. 9b, the inertial subrange is not resolved due to the fact that turbulence scales are small and that the sampling frequency of10

0.25 Hz is not fast enough to capture the smaller turbulence scales.

Generally, the values of M11 at various lags computed from either the LLNL WC or sonic anemometers are in agreement

with each other. However, differences inM11 do exist due to similar reasons to those discussed for the OU DL. For time periods

when the lower frequency portion of the inertial subrange could be resolved (i.e., in Fig. 9c, e), the structure function fitting

yields an improved estimate for σ2
w compared to the raw variance atM11(0), that is closer to the sonic-derived value. However,15

when no portion of the inertial subrange is resolved, the fitting of Eq. 4 poorly models the true values of M11 at short lags

and the estimated value of σ2
w is grossly underestimated. This is expected, as the fitted function only applies within the inertial

subrange.

4.4 Accuracy of DL Variance Estimates

Comparisons of 30-min averaged σ2
w from the DL observations, which were either directly computed or estimated using the20

structure function fitting, compared with those from sonic anemometers are shown in Fig. 10. For both the LLNL WC and

OU DL, using the structure function fitting to estimate values of σ2
w generally provided more accurate and less biased values,

based on the higher values of R2, a slope of the best-fit line closer to one, and y-intercept closer to zero compared to the values

computed directly from the timeseries. The greater scatter in the LLNL WC measurement is attributed to its reduced sampling

frequency. Since there are 3 s gaps in its measurements of w while it collects data at off-zenith angles for the DBS scan, values25

of σ2
w computed from the LLNL WC are not as robust as those from the OU DL, which took w measurements continuously

with a sampling frequency of 0.7 Hz. Still, LLNL WC estimates of σ2
w are in generally good agreement (R2 ≈ 0.9) with those

from the sonic anemometers and show low bias when using the autocovariance fitting.

For the OU DL, estimates of σ2
w are generally improved when using the structure function fitting for the entire range

of variance values. When the raw OU DL σ2
w value is lower than the sonic value, the autocovariance technique generally30

increases the estimate of σ2
w. Conversely, when significant noise is present and the raw OU DL σ2

w is greater than the sonic

value, the autocovariance technique generally reduces the estimate of σ2
w improving the estimate. This is particularly evident in

Fig. 10b, where there are a cluster of points of uncorrected σ2
w that are much larger than the true atmospheric variance. These

overestimates are coincident with a time period when the OU DL SNR was reduced. For estimates of σ2
w from the LLNL WC,

19

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-134, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 7 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

0 10 20 30 40 50
0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Lag [s]

AC
F 

[m
2  s

2 ]

0 10 20 30 40 50
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag [s]

AC
F 

[m
2  s

2 ]

0 10 20 30 40 50
0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lag [s]

AC
F 

[m
2  s

2 ]

a)

c)

b)

e)

fS
(f)

 [m
  s

  ]
2

-2

M
1
1

M
1
1

M
1
1

10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

d)

10 3 10 2 10 1 100 10110 4

10 3

10 2

10 1

100

Frequency (Hz)

fS
(f)

 (m
2  s

2 )

f)

f [Hz]

fS
(f)

 [m
  s

  ]
2

-2
fS

(f)
 [m

  s
  ]

2
-2

τmin
τmax

= 4.0 s
= 8.0 s

τmin
τmax

= 4.0 s
= 8.0 s

τmin
τmax

= 4.0 s
= 8.0 s

Figure 9. Sample M11 (left column) and the corresponding spectra (right column) averaged over different 30-min time periods for measure-

ments at 100-m. The spectra are made by averaging 10-min spectra within the 30-min time period to reduce the noise within the spectra.

Measurements shown are those calculated from the raw sonic observations (blue), sonic data averaged to match the lidar averaging time (red),

and LLNL WC observations (green). Dashed lines overlaid on M11 are the fittings of the structure function fit to the corresponding measure-

ment. The fitting for the filtered sonic data use the same lags as that for the DL. M11 and the spectra are computed over 0030–0100 UTC

(a, b), 2130–2200 UTC (c, d), and 1730–1800 UTC (e, f) on 27 March. Values of τmax and τmin for each time period is shown in the lower

left of (a, c, e).
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Figure 10. Comparison of σ2
w computed from DL observations with those from the sonic anemometer observations at different heights.

Heights were chosen to highlight differences in the quality of observations with height, and where high-quality sonic and lidar observations

are available. Observations from the OU DL are shown in (a, b), while LLNL WC measurements are shown in (c, d). Red denotes σ2
w

computed from the raw DL data (i.e., M11(0)), while blue is for values wherein σ2
w is taken as M∗11(0). Equations of the best fits are shown

in the upper left of each plot, with R2 being the coefficient of determination. Values of σ2
w are averaged over 30-min windows.

directly-computed values of σ2
w are generally larger than those computed from the structure function fitting regardless of the

magnitude of the turbulence. Again, the autocovariance fitting accurately removes the contribution of noise in the measured
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σ2
w, which is particularly apparent when σ2

w is less than 0.5 m2 s−2 in Fig. 10d. For time periods when turbulence is strong,

the autocovariance fitting to the LLNL WC data often leads to reduced values of σ2
w; this could be due to increased noise in

the LLNL WC observations compared to those from the OU DL under similarly strongly turbulent conditions, or the fact that

the structure function fitting is not as accurate with a smaller number of lags used due to the reduced sampling rate of the

LLNL WC compared to the OU DL.5

4.5 Effect of Turbulence Characteristics and Stability

As shown earlier, the DL must be able to resolve a portion of the inertial subrange in order to accurately extract measurements

of σ2
w. If part of the inertial subrange is not explicitly resolved when turbulence scales are small, then a proper fitting that

is representative of how M11 actually varies at small lags cannot be accurately applied. Regardless, even in these conditions

when turbulence is weak, it is especially important to not simply use σ2
w directly computed from the timeseries, as ε2 is often10

a large component of the computed σ2
w, as shown for small values of σ2

w in Fig. 10b, d. Thus, even for these cases, applying

the structure function fitting generally provides more accurate estimates of σ2
w, although M∗11(0) values are systematically

underestimates of the true variance.

For the OU DL, estimates of σ2
w are generally in better agreement at 300 m than at lower heights. In fact, during the two-day

observational period, σ2
w generally is more underestimated at lower heights reflected in the slope of the best fit line decreasing.15

While the reason for this is not entirely clear, it is thought that the more accurate measurements are made at higher heights

due to the fact that eddies are larger further from the ground, which are better resolved by the DL. These differences in how

the accuracy of lidar variance measurements change with height needs to be considered when evaluating how second- and

higher-order statistics vary with height.

The relationship between the accuracy of turbulence parameters measured by both DLs and stability, specifically Ri, during20

those observations is shown in Fig. 11. During netural/unstable conditions when Ri is close to zero or negative, the estimates

of σ2
w from both DLs are generally more accurate than those measurements during stable conditions. This is evident based on

the lower scatter and ratios of σ2
w closer to one under unstable conditions for both uncorrected and corrected estimates. Addi-

tionally, especially for OU DL measurements, the corrected measurements during convective conditions are larger and more

accurate than those that are uncorrected. When conditions are stable, there is substantially more scatter in the quality of the DL25

measurements and the improvement due to the structure function fitting is less clear. There are times when the correction tech-

nique improves the σ2
w estimates, such as when significant noise is present that is accurately removed. These time periods also

tend to occur when SNR is reduced, as shown in Fig. 12. The method also can lead to worse estimates of σ2
w, when turbulence

scales are small and the inertial subrange is not properly resolved by the DLs. However, applying the extrapolation technique

during stable conditions generally improves the estimates of σ2
w. Although values of σ2

w are systematically underestimated30

when determined from the extrapolation method during stable conditions, the values are more comparable with each other than

uncorrected measurements.
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Figure 11. Relation of stability with error in lidar measured σ2
w, as compared to σ2

w computed from sonic anemometer measurements, for

raw (red) and corrected (blue) measurements. Measurements from the OU DL at 300-m are shown in a), while LLNL WC measurements at

100-m are shown in b). For some time periods under stable conditions (e.g., Ri greater than 0.25), uncorrected DL measurements have very

high error, the ratio is greater than 2, and points are off the graph. During the study period, the conditions were predominantly near-neutral,

which is why there are fewer data points during stable conditions.

5 Discussion

Below, recommendations are made as to the implementation of this technique for use with DLs based on these results. Addi-

tionally, the importance of validation studies for measurements from various types of lidars is discussed.

5.1 Possible Applications to Other DL Scanning Techniques

Within Sect. 4, it is shown that the autocovariance technique can be used to improve DL turbulence measurements, specifically5

σ2
w here, by both removing noise and correcting for unresolved turbulence structures. This method could similarly be applied to

measurements of other turbulent quantities. For instance, for a DL continuously pointing at a very low elevation (near zero) into

the wind, values of σ2
u can be derived by using a similar technique. Furthermore, this technique could be applied to be used

in conjunction with more advanced scanning strategies. For turbulence measurements using the six-beam scanning strategy

(Sathe et al., 2015), variances are first computed for each of the six independent beams. The six components of the Reynolds10

stress tensor can be computed from the individual variances of the six beams. However, due to the equations of computing each

component of the Reynolds stress tensor, the effect of noise within each individual measurement is magnified. In particular, if

there is a large amount of noise in the vertical beam compared to other beams from differences in SNR, then negative values of

σ2
u and σ2

v can be computed (Newman et al., 2015), which is not realistic. Thus, if the observations within each beam are taken
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Figure 12. Relation of SNR with error of lidar measured σ2
w, as compared to σ2

w computed from sonic anemometer measurements, for raw

(red) and corrected (blue) measurements. Measurements from the OU DL at 300-m are shown in a), while LLNL WC measurements at

100-m are shown in b).

at a large enough sampling rate to resolve the inertial subrange, the autocovariance technique should be applied to variances

calculated from each beam before computing the velocity variances.

5.2 Importance of Validation Studies for Various Types of Lidars

Remote sensors, such as lidars, provide the ability to measure various quantities throughout the atmosphere. However, it is

imperative that these measurements are compared with in situ observations for validation. Through this, relative accuracies can5

be quantified, so that future measurements using only remote sensors can be correctly interpreted and utilized. While the first

in-depth analysis of σ2
w estimates measured using a method proposed by Lenschow et al. (2000) are presented here, further

intercomparison studies of DL and in situ measurements are needed. Since this study was conducted over a short two-day

period in early spring, the atmospheric conditions were not representative of the wide range that may occur over the entire

year. Additionally, the measurement comparisons all were within the lowest 300-m of the PBL. While this provided a larger10

overlap region than allowed by most conventional meteorological towers, it still only encompasses a fraction of the possible

PBL depth. As discussed in Sect. 4.4, there is evidence that biases in DL σ2
w change with height, which needs to be investigated

further. These biases will affect how the DL-measured profiles of σ2
w vary with height.

In addition, measurements of higher-order moments from other types of lidars, such as DIALs and Raman lidars, should

also be compared with in situ measurements. Due to the larger averaging time and often larger lag times used, errors associated15

with these lidars are likely higher and measured quantities are likely biased low, as discussed in Sect. 4.1. Turner et al. (2014a)

compared Raman lidar-derived estimates of water vapour variance and skewness with those measured from aircraft, showing
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general good agreement in the trends in the profiles. However, the accuracy of the values of the DIAL and Raman lidar higher-

order moments should be carefully evaluated.

6 Summary and Conclusions

Here, a method discussed by Lenschow et al. (2000) of measuring higher-order statistics using autocovariances from lidar data

is carefully evaluated. Specifically, estimates of vertical velocity variance and integral timescales derived from DL observations5

are compared with similar measurements from collocated sonic anemometers. Two DLs, a WindCube v2 and a Halo Streamline,

were placed within a few metres of the 300-m tower at the Boulder Atmospheric Observatory in Erie, Colorado, USA from

26 to 28 March 2014. The tower was instrumented with sonic anemometers at 50 m intervals, up to 300 m, for validation and

comparison of measurements from the DL.

The impact of several parameters on the accuracy and quality of lidar variance estimates is investigated using two methods.10

First, sonic anemometer observations are averaged to simulate typical averaging times of different types of lidars, after which

the autocovariance technique is used with various lag times to retrieve the variance values. Secondly, variances computed from

the sonic anemometers are compared with those from the DL observations, both of those computed directly and using the

autocovariance technique. Through these comparisons, it is shown that

– The amount of lag time used within the fitting of the structure function to the autocovariance is critical for accurate15

estimates of σ2
w, and the number of lags leading to accurate retrievals of variance estimates are defined herein. Long

lag times, which are generally used when extracting higher-order moments from DIALs and Raman lidars, lead to gross

underestimates of the true atmospheric variance.

– Not only does the autocovariance method accurately remove contributions from noise, but it also can be used to correct

for limitations of time and volume averaging in the measurements. Thus, short lag times, for which the small-scale20

turbulent eddies are not accurately sampled (i.e., less than τmin), should not be used when applying the fitting of the

structure function.

– Generally, estimates of the vertical velocity variance from the DLs agree with those computed from sonic anemometers

at the same measurement height, especially during unstable conditions. Small differences in the measurements can be at-

tributed to differences in averaging volumes (and averaging heights). For the WindCube v2, more substantial differences25

in the measurements are due to the reduced sampling rate of the measurements, as vertical velocity is only measured ev-

ery 4 s. By applying the autocovariance method, estimates of DL vertical velocity variance measurements are generally

improved, even when turbulence is weak under stable conditions since small amounts of noise are a larger proportion of

the total measured variance.

The importance of intercomparison studies for remote sensor measurements is highlighted. In particular, techniques for30

retrieving various derived-statistics can be validated and refined through the intercomparison of remote sensor measurements
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with high-quality in situ observations. Limitations in the applicability of the techniques can be identified as well. Since it

is shown that DL-derived turbulence measurements are generally improved by applying the autocovariance techniques, it is

believed that this method can be applied to more measurements taken using more advanced scanning strategies, such as the

six-beam technique.
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